FAIR Principles Workshop – BOSTON

Date(s) - 03 Dec 2018
9:00 am - 5:30 pm

EPAM Continuum Innovation



The goal of this workshop is to share best practices and tools for the FAIRification and the FAIR data management of internal preclinical and clinical datasets in Pharma IT.

The advent of ML / AI for pharma is very promising, however without a basic amount of metadata and smart annotation of existing data assets, the algorithms cannot make much headway.

Several years of IMI knowledge management projects, experiments with data warehouses, data lakes etc. have made it clear that proper semantic annotation of data assets is hard and is resource intensive but a very important hurdle to overcome.

In this workshop, we will evaluate key topics around the Findability, Accessibility and Interoperability of data sets, and discuss the role in this of recent developments such as Bioschemas. We will focus on concrete practical approaches and tools that exist today to bring existing pharma data assets in line with the FAIR Guiding Principles. In the last breakout session, we will flesh out the business case for the proposed FAIR principles project selected at the Boston conference “FAIR principles and metrics tools for life science industry”

Location of workshop to be finalized shortly.   Please register now.


DRAFT Agenda
09:00 Welcome / logistics/ purpose (Host: Chris Waller, Vice President and Chief Scientist at EPAM Systems & Pistoia Alliance: Roger Frechette)
09:10 Short talk #1.1: FAIR for Pharma Introduction, Data Catalogues to Knowledge Graphs (Tom Plasterer, US Cross-Science Director, R&D Information, AstraZeneca)
09:25 Short talk #1.2: Pistoia Alliance US breakout summary (TBD)
09:45 Short talk #1.3: FAIR Metrics (Avi Ma’ayan, Professor, Department of Pharmacological Sciences; Director, Mount Sinai Center for Bioinformatics)
10:00 Introduction to the “World Café” breakout session methodology (Andreas Matern, Head of APIs and Data Cataloging, Sanofi)
10:15 Breakout #1: (World Café – 1 topic, 4 groups) FAIR Metrics for Pharma—What is relevant?”
11:15 Coffee Break
11:30 Session 2: FAIR Metrics Gap Analysis 
11:30  Short talk #2.1: FAIR, Master Data and Reference Data (TBC – Colin Wood, Head of Information Architecture, AstraZeneca)
11:45 Breakout #2: (World Café – 4 topics, 4 groups) “FAIR Metrics for Pharma—What is missing” (including Findability, Accessibility, Interoperability and Reusability)
12:45 Lunch
13:30 Session 3: Future state 
13:30 Short talk #3.1: FAIR Ecosystem (TBC – Rafael Jimenez Chief Data Architect at ELIXIR)
13:45 Breakout #3: (World Café – 1 topic, 4 groups) “Assessing your current data estate for FAIRness, estimating cost-of-change and return-on-investment”

What about other data profiling needs?  Data Quality?  Data Utility (data can be FAIR but not useful)

14:45 Coffee break
15:15 Session 4: Operationalization
15:15 Short talk #4.1: “The challenges & Opportunities of Implementing FAIR in life Science R&D” (Eric Little, Chief Data Officer, Osthus)
15:30 Breakout #4 (World Café – 4 topics, 4 groups) – FAIR project Business Case: Situational Analysis, Cost-benefit analysis, Challenges and Risks, Communications & Sustainability
16:30 Review proposal outline and identify project leads
16:40 What’s next? Brainstorm (workshops, webinars, publications, related topics – AI, etc.)
17:00 Workshop Close & Networking Reception

Posted in Pistoia Alliance.