

UXLS Community

Workstream: UX for AI and AI for UX Quick start learning resources

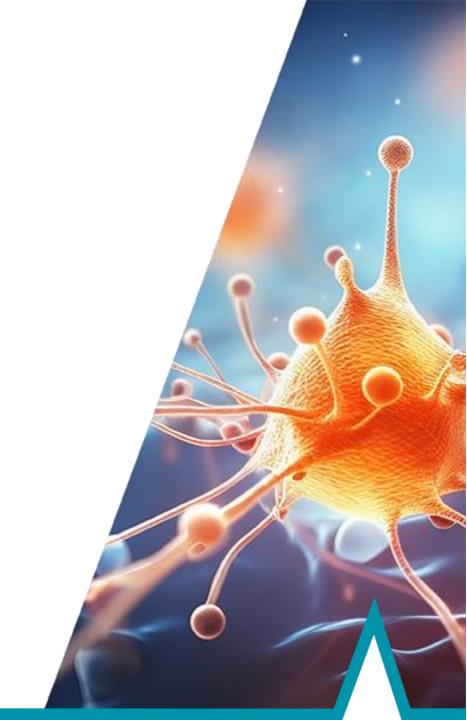
Autumn 2025

UX for AI – An ongoing conversation

This is a resource pack assembled by the UXLS AI workstream to enable UX practitioners working in the Life Sciences to get some basic understanding across three different areas:

- When is an Al solution appropriate
- Agentic Al
- Ethical Al and trust

This resource pack was assembled in Q1 and Q2 of 2025.

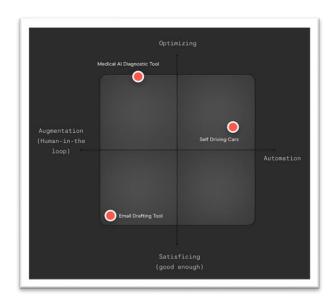

What this is isn't

A complete training course on AI - but rather a starting point to some resources we have found useful.

When is an Al solution appropriate?

Resources that cover:

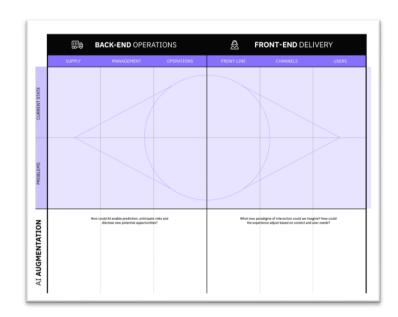
- 1. When to use AI?
- 2. What flavour of AI to use?



Do you need AI to solve the problem?

Useful resources to help you and your team identify which Al opportunities are the most appropriate ones for your problem space

Designing Al with purpose: the Al intention matrix by Richard Yang


A framework to help teams manage the (excessive) enthusiasm to push for advanced Al features when they don't add much value to the users

Al opportunity landscape

by Oblo

A framework to help teams identify which AI opportunities can be integrated based on the understanding of user needs and inspired by the technological capabilities.

What AI capabilities do you need?

Useful resources to help you and your team identify which specific AI capabilities are most appropriate for your problem space

Al functionality cards

by Service Design tools

A set of cards of current AI capabilities to stimulate the ideation process and inform the generation of opportunities for AI in a given problem space

Al cards

by 33A

Al capability cards to help you and your team to decide where to apply Al in a given setting

Al Design Patterns

Al Design Pattern Framework for Al/UX

by Dave Brown

Framework to guide designers to create effective and intuitive Al experiences design principles, considerations and examples of how to address them through five different phases:

- Al onboarding: Expectation framing and intent scaffolding
- User input: Support users in creating the right inputs for AI
- Al output: Design good processing cues, confidence visualisation and explainability and how to support users with multiple outputs from Al
- Undo and version control: Design patterns to allow users to correct, reverse, or refine interactions
- **System learning:** Patterns to design how the AI system adapts, learns and improves over time

Expectation Framing

What it solves:

Users often assume software is deterministic.

Framing expectations early — before the user even interacts — helps establis a healthy mortal of the system's canabilities and limitations.

Why it matters

Users bring mental models from traditional software into Al-driven interfaces

Without upfront messaging that frames the system as collaborative, probabilistic, and imperfect, users may expect precision and get frustrated by unexpected or "wrong" behavior.

Design Considerations:

- How do we signal that this is a collaborative system not an oracle?
- Can we use friendly, human-centered language to build trust without overpromising?
- Are we clear about the kinds of things the Al is good and had at?

Examples:

Product	Example Phrase	Context Location	
GitHub Copilot	"I can help, but I make mistakes."	Welcome tooltip/copy	
LinkedIn	"People you may know"	Section headers	
ChatGPT	"May occasionally produce	System message or UI bar	

Expressive Input

What it colue

All outputs require the right input. Yet, users may struggle to express nuance tone, or creative intent through traditional natural-language prompts alone.

Expressive input patterns provide lightweight, visual, or emotionally rich ways to shape Al behavior — enhancing intent clarity or creative exploration without requiring detailed language.

Why it matters:

These patterns make Al feel more approachable, fun, and intuitive. They invite experimentation, support faster iteration, and reduce prompt anxiety — especially for users who don't know what to type.

Expressive inputs can also unlock more personalized, emotionally resonant experiences without adding cognitive load. These pattern are especially helpful in creative multimodal or mobile. first environments

Design Considerations:

- Are expressive inputs intuitive, or do they need onboarding?
- Do users feel in control or surprised by how the Al interprets t
- Can these inputs be combined with traditional prompts?
- · Are expressiveness tools accessible across modalities (text, voice, visuals)?
- . Is it clear how the system is interpreting visual/emotional cues:

Examples:

Product	Input type	Visual generation input Encourages structured creativity	
Midjourney	Emoji-as-prompt		
Luma Al	Madiibs-style prompt builder		
Figma	2x2 grid	Modifying copy across a range of options	
Canva Magic Write	Icon-based prompt builder	Guided content creation	

Processing

What it solves:

Al responses often involve invisible, multi-step operations — from calling APIs or MCPs, to generating drafts or running retrievals. Without clear signals that work is happening, users may feel confused, impatient, or assume the system is broken.

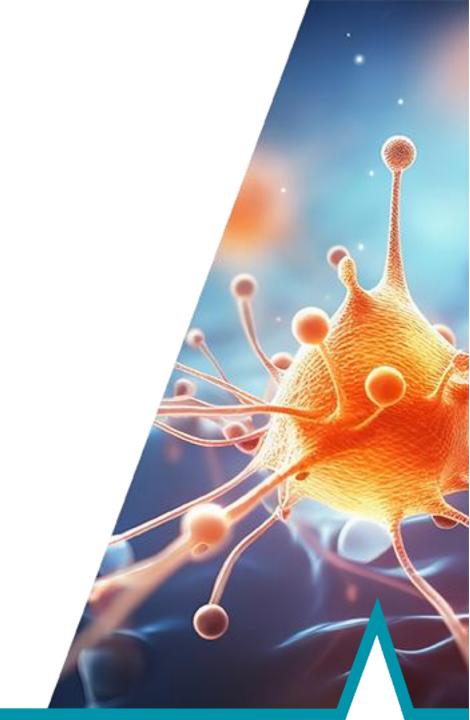
Processing cues reassure users that the system is active and build trust by revealing how work is being done, not just that something is coming.

Why it matters:

Good processing design shapes user expectations around time, effort, and trust. It manages impatience, prevents premature abandomment, and builds transparency—sepcially in agentic or tool-using systems where multiple steps are hidden. It also allows users to calibrate mental models: "Is this Al just thisting or joi it struk?"

esign Considerations.

- Is it clear that the system is working not stalled through animations or visible cues?
- Is the wait time contextualized appropriately, with progress indicators or
 The indicators of the indicators or indicators or indicators.
- Is transparency about processing balanced with cognitive load, depending on task complexity?


Examples

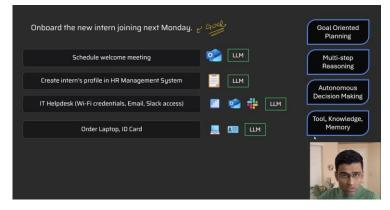
Product	Processing mechanism	Context	Туре
ChatGPT	Typing dots animation () while streaming response	Chat generation — shows active thinking	Streaming
Claude (Artifacts)	Typing animation while drafting, live updating doc preview	Full document creation with inline artifacts	Streaming + partial steps
Illicit	Show retrieval, search, and reasoning stages visibly before synthesis	Research agent surfacing work-in- progress	Processing Steps
Attio Al	Status updates like "Analyzing meeting notes" → "Drafting summary"	CRM workflow with multi-stage processing	Processing Steps

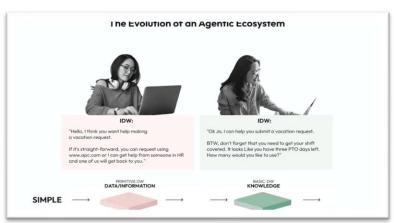
Agentic Al

Topics covered:

- 1. What is Agentic AI?
- 2. Agentic Al resources

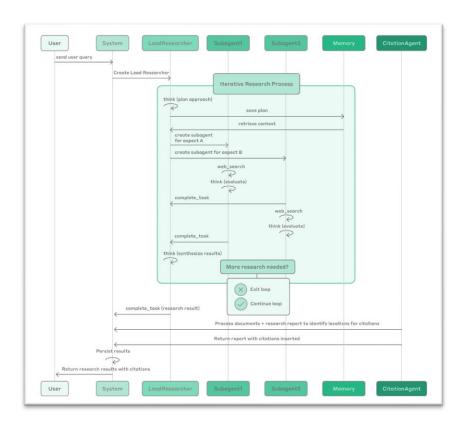
What is Agentic Al?

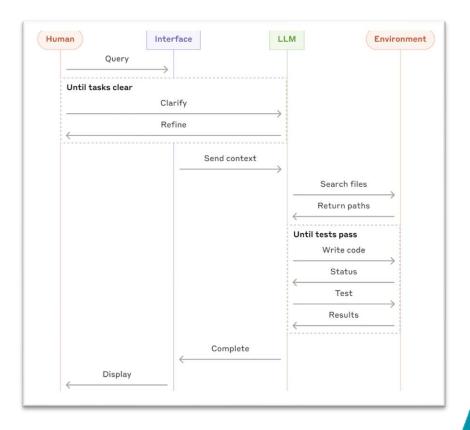

We recommend the following videos that give a basic introduction to Agentic AI and provide a comparison of Agentic AI versus Generative AI with some excellent examples:


What is Agentic AI and How Does it Work?
by Codebasics

Generative AI vs Agentic AI:
Shaping the future of AI
collaboration
by IBM Technology

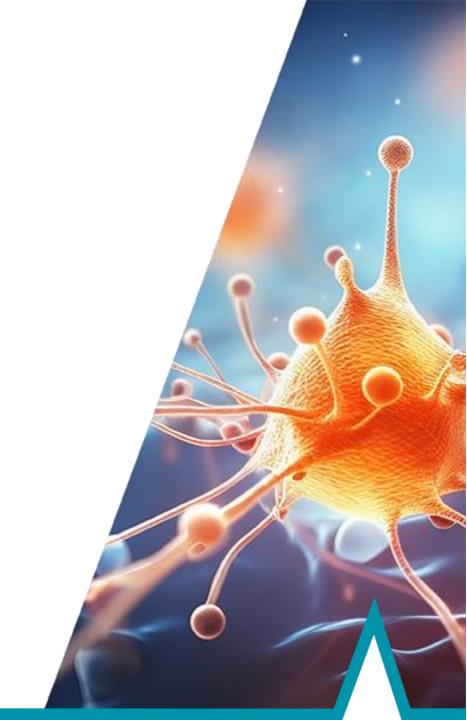
Agentic AI: Fostering
Autonomous Decision Making
in the Enterprise
by UX Magazine





Agentic AI additional resources

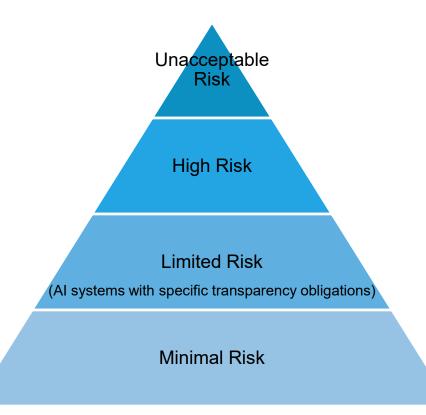
Case study on how to create a multiagent research system by Anthropic


Guidelines on building effective agents by Anthropic

Legal and ethical responsibilities

Topics covered:

- 1. Legal responsibilities and the EU AI act
- 2. Ethical responsibilities
- 3. GxP regulated environments

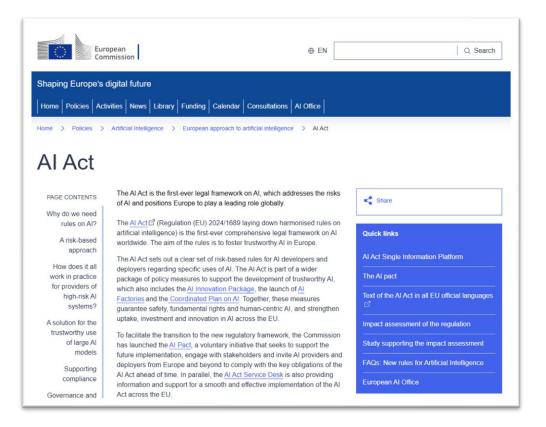


Legal responsibilities

EU AI Act (2024)

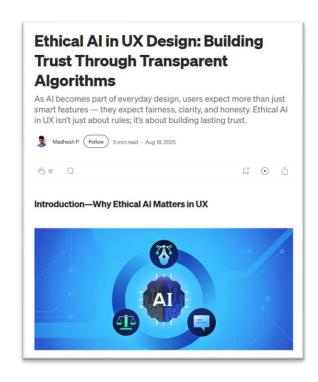
The EU Al Act introduces a uniform framework based on a forward-looking definition of Al and a risk-based approach:

- Minimal risk: most AI systems such as spam filters and AI-enabled video games face no obligation under the AI Act, but companies can voluntarily adopt additional codes of conduct.
- Specific transparency risk: systems like chatbots must clearly inform users that they are interacting with a machine, while certain Al-generated content must be labelled as such.
- High risk: high-risk AI systems such as AI-based medical software or AI systems used for recruitment must comply with strict requirements
- **Unacceptable risk:** for example, AI systems that allow "social scoring" by governments or companies are considered a clear threat to people's fundamental rights and are therefore banned.

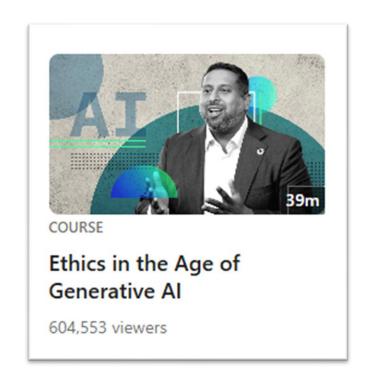

The design should accommodate for the level of risk identified and minimize this risk where possible.

Legal responsibilities

Further information on the EU AI Act (2024)



EU Al act video



Read more: https://digital-strategy.ec.europa.eu/en/policies/regulatory-framework-ai

Ethical responsibilities

Ethical AI in UX design by MadPesh P

Ethics in the Age of Gen
Al
by Vilas Dhar

<u>UNESCO: Ethics of</u> <u>Artificial Intelligence</u>

GXP regulated environments – Annex 22

- Annex 22 is a newly introduced section in EudraLex Volume 4 (EU GMP Guide), specifically addressing the use of Artificial Intelligence (AI) and Machine Learning (ML) in pharmaceutical and biologics manufacturing and quality systems
- Annex 22 provides guidelines of Al usage in a GXP environment.
- It formally acknowledges AI/ML in GMP contexts—particularly for static, deterministic models with direct impact on patient safety, product quality, or data integrity

2. Principles

- 2.1. Personnel. In order to adequately understand the intended use and the associated risks of the application of an AI model in a GMP environment, there should be close cooperation between all relevant parties during algorithm selection, and model training, validation, testing and operation. This includes but may not be limited to process subject matter experts (SMEs), QA, data scientists, IT, and consultants. All personnel should have adequate qualifications, defined responsibilities and appropriate level of access.
- 2.2. Documentation. Documentation for activities described in this section should be available and reviewed by the regulated user irrespective of whether a model is trained, validated and tested in-house or whether it is provided by a supplier or service provider.
- Quality Risk Management Activities described in this document should be implemented based on the risk to patient safety, product quality and data integrity.

Read more on the Annex 22

Evaluating Al

Topics covered:

1. Bot usability scale

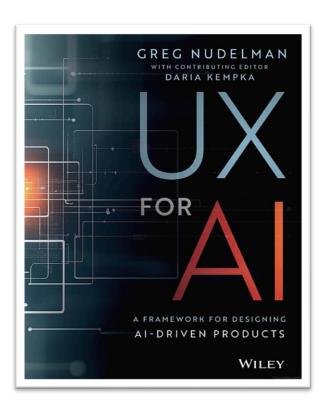
Measuring Chatbots usability

Currently our workstream have not found many useful resources to measure usability of Al.

We have found mentions of chat bot usability through the Bot Usability Scale below.

Bot Usability Scale (BUS)

Borsci, S., Malizia, A., Schmettow, M. et al. The Chatbot Usability Scale: the Design and Pilot of a Usability Scale for Interaction with Al-Based Conversational Agents. Pers Ubiquit Comput 26, 95–119 (2022).
 https://doi.org/10.1007/s00779-021-01582-9

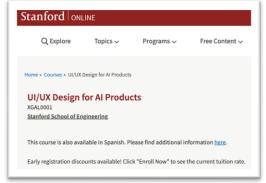

Although not specifically measuring trust the authors have identified the following to be true:

"It is easier to assess 'trust' in a CRM chatbot interaction by assessing the bot's capacity to provide
information and helping to attain a goal (i.e. the credibility of information) instead of by assessing
trustworthiness as a general and unspecified sense of trust. Assessing trustworthiness could require a
different set of items more in line with trust and technology acceptance theory"

Useful resources recommended by our workstream

Books:

UX for AI: A Framework for Designing AI-Driven Products by Greg Nudelman



Courses:

Al Design Sprint courses by 33a.ai

UI/UX Design for AI products by Stanford

Resource created in 2025 by

Al for UX and UX for Al workstream

Pistoia Alliance UXLS Community

Workstream leads

Voula Gkatzidou (GSK)

Paula de Matos (AVEVA)

Workstream members

Peter Hummel (Novartis)

Nelson Taruc (Lextech)

Roger Attrill (IQVIA)

Sudha Yerramilli (Merck)

Fernando Barneze Gonzalez (Novartis)

Julie Morrison (Instem)

Breac Baker (Instem)

Brian Mila (Lextech)

Kasia Konczak (GSK)

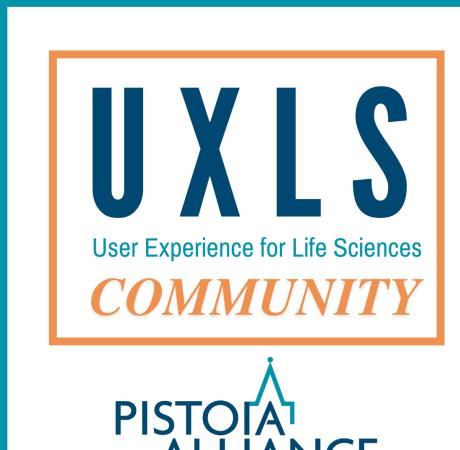
Aleksandra Zajdenc-Jurczyk (Roche)

John Wise (Pistoia Alliance)

Anne Stevens (Elsevier)

Jing Zhang (AstraZeneca)

Adriana Rys (Novartis)


Ahmet Bektes (Elsevier)

Join the journey

Pistoiaalliance.org/community/uxls

Community Facilitator: Farah Egby farah.egby@pistoiaalliance.org

Our members collaborate as equals on open projects that generate significant value for the worldwide life science community

PISTOrai ALLIANCE

UXLS Community Funders

Thanks to our funders who are making this possible, without their help this community would not exist or collaborate. Thanks for all the in-kind contributions for their time and expertise

